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Abstract. A tight-binding formulation of the many-body enhanced paramagnetic spin sus- 
ceptibility derived within the local-density approximation is applied to the antiferro- 
magnetism of Cr alloys. The effects of alloying on the band structures are modelled by a 
Slater-Koster version of the coherent-potential approximation and matrix elements are 
computed directly using an averaged linear-combination-of-atomic-orbitals treatment. Anti- 
ferromagnetic ordering of the ground state, manifested by a spin-density wave of non-zero 
wave vector, is predicted when thezero-temperature staticsusceptibility exhibits asingularity 
for that wave vector. The spin-density-wave wave vectors computed using this method 
for dilute Cr,_,V, and Cr,_.Mn, alloys are in good agreement with neutron scattering 
measurements of the wave vectors as functions of impurity concentration. For larger con- 
centrations of impurities, predictions of magnetic order can be made for alternate cubic 
structures of other 3d transition metals, whose novel structural phases might be stabilized 
by alloying. In the case of Cr ,  - ,Mn,, a transition to ferromagnetism is predicted for x = 0.5. 
StabilizationofCr,_,Mn,,,, ,inthesimpIeecccrystalstructurecouldpermit anexperimental 
test of an earlier prediction of ferromagnetism in 6-Mn. 

1. Introduction 

The incommensurate antiferromagnetism of Cr alloys was first observed over twenty 
years ago in neutron scattering experiments [l]. Pure Cr itself is well known as an 
antiferromagnet [ 2 ]  with a spin-density wave (SDW) wave vector, qSDW, of 0.95 ( 2 n / a )  
[loo] at low temperatures. An early contribution to the understanding of this phenom- 
enon is due to Overhauser [3] who showed that the electron gas treated within the 
Hartree-Fock approximation is unstable toward antiferromagnetic order with q s D w  

equal to 2kF. But the Hartree-Fock approximation includes interactions according to 
the bare Coulomb potential and completely neglects correlations so that its applicability 
to numerical calculations for real systems is somewhat limited. Nevertheless, later work 
by Lomer [4] found that the SDW wave vector corresponded almost exactly to the 
nesting wave vector of two sheets of the Fermi surface (the electron jack centred about 
r and the hole octahedron centred about H )  as shown in figure 1. As a result of the 
nesting, even random-phase-approximation (RPA) formulations [ 5 ,  61 of the para- 
magnetic susceptibility, for example, contain a small energy denominator over a sub- 
stantial portion of the Brillouin zone. This leads to a peak in the susceptibility at the 
nesting wave vector, this peak becomes a logarithmic singularity for perfect nesting. 
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Figure 1. Cross section of the Fermi surface of Cr  
in the [loo] plane. The nesting wave vector for the 
electron jack about and the hole octahedron 
about H is indicated; also note the small hole 
pockets about N and (0.3,0,0)(2n/a). With the 
addition of V impurities, the electron surface con- 
tracts and the hole surface expands causing a 
decrease in the magnitude of the nesting wave 
vector. 

Since the free-energy decrease associated with a transition to the antiferromagnetically 
ordered phase is proportional to the RPA susceptibility, a global maximum in this quantity 
(from a peak, for example) at some non-zero wave vector is suggestive of an SDW ground 
state with that wave vector. 

For dilute concentrations of impurities in Cr, it may be reasonably assumed that the 
band structure and the Fermi surface topology of pure Cr are not substantially altered. 
The discussion in the previous paragraph can then be extended to explain in simple 
qualitative terms the incommensurate antiferromagnetism observed in alloys of Cr. For 
impurities with fewer electrons than Cr, the volume enclosed by electron sheets of the 
Fermi surface decreases relative to pure Cr while the volume of hole sheets increases. 
Consequently, the SDW wave vector for Cr, -*VI alloys can be expected to decrease with 
increased impurity concentration as indicated in figure 1. Mn impurities, with a greater 
number of electrons than Cr, result in SDW wave vectors that increase with concentration. 
Similarly, iso-electronic alloying species such as MO should have a much weaker effect 
on qsDw apart from the local volume changes associated with the more massive 
impurities; this problem is not considered in the present study. RPA calculations of the 
paramagnetic susceptibility have been performed for dilute alloys of Cr with V and Mn 
[6], as well as MO [ 7 ] ,  as a function of concentration. The wave vectors of the peaks in 
the susceptibility follow the discussed trends in very good agreement with neutron 
scattering [l] SDW wave vectors. 

Despite the relative success of the RPA treatment of Cr alloys, the antiferromagnetic 
ground state can be reliably expected to occur only if the computed paramagnetic 
susceptibility is unphysical (i.e., it is singular or negative). Moreover, since itinerant 
magnetism is intrinsically a many-body phenomenon, the formulation of the sus- 
ceptibility must include electronic exchange and correlation in order to provide a quan- 
titative description of real systems. As discussed more completely in the next section, 
a magnetic instability with wave vector q is predicted if the many-body enhanced 
susceptibility exhibits a singularity for that wave vector. Even a simple Stoner model, 
for example, is sufficient to produce a singularity in the susceptibility (even though it 
cannot guarantee one). Nesting and matrix element effects must also be considered, 
although many-body interactions are ultimately responsible for the magnetic instability. 
A treatment in which exchange and correlation effects aie self-consistently included 
within the local-density approximation has already yielded excellent agreement with 
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experiment for the SDW wave vector of pure Cr and produced predictions of magnetic 
order in 6- (simple BCC) and y- (simple FCC) Mn [8], and has also predicted anti- 
ferromagnetism in expanded BCC Ti [9]. The purpose of the present study is to provide 
an extension of this many-body formulation of the paramagnetic susceptibility to study 
the antiferromagnetism of alloys, Cr alloys in particular. 

Previous theoretical work on the antiferromagnetism of Cr alloys can be resolved 
into two approaches. The first is based on the choice of a model mean-field Hamiltonian 
in which imperfect nesting of two bands is assumed [lo]. It can produce reasonable 
agreement with experimental SDW wave vectors, as well as other properties of the 
antiferromagnetic ground state. The other approach probes, using essentially a first- 
principles calculation, the paramagnetic susceptibility for magnetic instabilities [6], 
While this method employs an RPA formulation, it does not require empirical parameters 
or assumptions about the details of the band structure. 

The second approach is extended in the present work to include many-body inter- 
actions self-consistently. Such an approach is not only of interest for studying alloys, but 
is also of substantial practical value for determining the spin wave spectrum from the 
dynamic susceptibility and predicting magnetic transition temperatures, subjects of a 
future studies. The formulation of the many-body enhanced susceptibility and its method 
of calculation will be discussed in the next section. Results of the calculation are pre- 
sented and discussed in section 3. 

2. Formulation 

In order to determine qsDw for Cr alloys, the many-body enhanced paramagnetic sus- 
ceptibility is examined for an instability toward antiferromagnetic order. Since the 
susceptibility is a response function, an instability occurs either at the point the computed 
susceptibility exhibits a singularity or for a region of the Brillouin zone in which it is 
negative. Since a singularity will generally not appear without a change in sign of the 
susceptibility, qsDw is not uniquely determined since it could be located anywhere in the 
region of the zone which contains the singularity (or singularities) and a negative 
susceptibility. However, it may be reasonably assumed that if the wave vector of the 
singularity corresponds to a peak in the RPA susceptibility, that wave vector is in fact 
qsDw. In this case the magnetically ordered ground state is characterized by a spatial 
spin-density oscillation with a wavelength 2?G/qsD, in the appropriate direction. This 
approach is an effective, nearly first principles, method for predicting the existence and 
properties of magnetically ordered systems without the difficulties inherent in a total 
energy calculation. 

In the simplest application of the Stoner model, the enhanced susceptibility is written 
in terms of the RPA susceptibility xo according to 

where A contains exchange and correlation effects arising from particle-hole inter- 
actions in the polarization bubble. The quantity A has traditicnally been assumed to be 
either constant or to have some relatively simple q dependence. However, a self- 
consistent formulation of x has recently been developed [8, 111 in which the three 
quantities in (l)-xo, A, and X-becomes matrices on the reciprocal lattice basis. For 
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practical purposes, it is more convenient to express x by transforming ( 1 )  into its 
equivalent form on the orbital basis, 

where the summation indices run through the basis states (in this case 9 : l s ,  3p, and 5d), 
Zij is the atomic form factor, and the r matrix takes the form 

The RPA susceptibility matrix y is given by 

where Ek+ is the band energy for the electron stage k and band index p ,  Ak,p is the 
corresponding eigenvector, and fk,p is the equilibrium Fermi occupation factor. The 
wave vector sum runs over the full Brillouin zone, and its method of calculation will be 
discussed below. The X-matrix appearing in (3) is given by 

where A may be decomposed into the product of a solid angle integration and a scalar 
radial part: 

K n  is a Kubic harmonic (and, in turn, a linear combination of spherical harmonics) and 
so the angular integral can be evaluated analytically, independent of material parameters 
or impurity concentration in an alloy. The radial part A is determined, within the local- 
density approximation, by the exchange and correlation potential used, in principle, in 
computing the band structure. It may be written 

where V,,, is the exchange and correlation potential for the spin 0, p is the local electron 
charge density, and R ( r )  is the radial part of the neutral-atom d-state wave function. 
This integral is an intrinsic property of a metal in a given crystal structure and can be 
computed independently of the susceptibility calculation. For this purpose, the spin- 
polarized exchange and correlation potential of von Barth and Hedin [12] is employed, 
or the potential actually used in computing the band structure, and charge densities are 
obtained from the tables of Moruzzi, Janak and Williams [13] .  



Antiferromagnetism of chromium alloys 9089 

The elements of the form factor matrix appearing in (2) may be written [ll] 

Zji(q) = d,Z(O'(q) - 5z'2'(q)c1;2'(q) + 9z'4'(q)cf'(q) (8) 
where q is a unit vector in the direction of q, the cii are polynomials which may be 
evaluated directly [ 111, and 

Z("(q) = Jam r2R2(r ) j e (qr )  d r  (9) 

in whichjr is a spherical Bessel function. As appropriate for 3d metals, only e = 0 , 2 , 4  
contribute to the integral and R(r )  may be parametrized in the form 

where the quantities ai and ti are tabulated [14]. However, in the present calculation, 
the ti are rescaled by solving the radial Schrodinger equation subject to the constraint 
that 95% of the wave function is in the muffin tin sphere, consistent with the assumption 
of no overlap of the d-orbitals. The ai are then determined variationally using the 
self-consistent band structure potential. Since (10) cannot realistically represent the 
relatively free s and p electron states (which are treated as plane waves in computing the 
form factor), it should be observed that only the d states are enhanced by many-body 
effects in all of the contributions to the susceptibility given in (2). While this has 
the inherent shortcoming of introducing (most likely relatively small) errors into the 
numerical results, the qualitative features, primarily the instability towards magnetic 
order, will not be affected. This is a result of the fact that the itinerant magnetic behaviour 
of transition metals is due fundamentally to the electronic d-state character of these 
systems. 

Other aspects of this formulation have been discussed elsewhere [8, 111 and the 
primary reason for its review here is to extend the treatment to dilute alloys. For this 
purpose, it can reasonably be assumed that three quantities are altered from their values 
in pure Cr by the presence of impurity species: the band structure, the atomic form 
factor, and the exchange and correlation integral. The calculation of the band structure 
in metallic alloy systems, including dilute alloys, from first principles is a considerable 
undertaking, and is not yet mature enough to be considered reliable. For this reason, as 
well as computational convenience, Slater-Koster band structures, determined from 
accurate fits to first principles calculations, are used in the present study. Their use 
permits scaling properties of the atomic orbital overlap integrals to be exploited in a 
version of the coherent potential approximation [ 151. First, the averaged lattice constant 
for the alloy Cr, - x M x  where M is an arbitrary metal, is defined to be 

a = (1 - x)ac, + xuM (11) 
where acr and aM are the lattice constants for pure Cr and M, respectively, and x is the 
impurity concentration. The scaling scheme of Harrison [16] can now be applied to the 
overlap integrals of the pure metals. Denoting by vCr a given overlap integral for Cr, the 
corresponding alloy parameter is given by 

where n is -2 for s-s, s-p and p p  bonds, -7 /2  for s-d and p d  bonds, and -5 for d-d 
bonds, These new parameters are then used to calculate the band structure of the alloy. 
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Since the form factor is essentially an atomic quantity, it too is proportional to 
the respective number densities of host and impurity atoms. The alloy form factor is 
therefore approximated by 

Z ~ l - ~ y q )  = (1 - x ) I F ( q )  + xI?(q) .  (13) 
The last quantity to characterize in the alloy is the exchange and correlation integral. 
This is, in principle, as difficult a problem as the accurate calculation of the alloy band 
structure. However, since the local-density approximation is successful in accounting 
for the electronic properties of pure metals, it is reasonable to assume that it is appro- 
priate for use in dilute alloys. For this reason, the exchange and correlation integral is 
treated here as an averaged quantity in the same spirit as the form factor: 

A C ' I - x M x  = (1 - x)AC'  + X A M .  (14) 

Equations (1 1)-( 14) can be justifiably expected to represent accurately their respective 
quantities for dilute random alloys of Cr with the impurity species neighbouring Cr on 
both sides in the periodic table, although (14) is probably the least accurate. It can be 
argued that the slope of A would in fact be smaller than that given by (14) for dilute alloys 
simply because of the local-density approximation, a point which will be explored in the 
following section. With this in mind, the formulation of the dilute alloy problem is 
complete. 

To a somewhat lesser accuracy, the requirement of dilute impurity concentrations 
can be relaxed for the alloy band structures since in this calculation the lattice constants 
of V (5.72 atomic units) and Mn (5.2 atomic units) are within 10% of the lattice constant 
of Cr (5.4456 atomic units). Consequently, the band structures generated using (11) and 
(12) are probably about as accurate as the fitting procedure would be to a hypothetical 
first-principles alloy band structure for anyx, 0 < x < 1. In the same spirit, it is therefore 
also reasonable to expect that I ,  and A may be approximated by (13) and (14), respect- 
ively, for any x .  

In order to compute the susceptibility, it has already been noted that Slater-Koster 
band structures are utilized as a convenience. For Cr, an orthogonal two-centre Slater- 
Koster fit [17] to an LCAO band structure [18] is made for six bands (the one s and five d 
bands) and 506 kpoints in the irreducible (1/48) wedge of the Brillouin zone. The fit has 
an RMS error of 13.7 mRyd overall and is considerably more accurate in the vicinity of 
the Fermi surface, correctly reproducing the density of states and Fermi energy obtained 
from the first principles band structure. A similar fit to a scalar relativistic APW band 
structure [19] for V, using 6 bands and 55 k points in the irreducible wedge, has an RMS 
error of 4.4 mRyd. For Mn, the (6 band, 506 kpoint) fit is made to an L a o  band structure 
[20] computed in the simple BCC phase; although the equilibrium low-temperature 
crystal structure of Mn is a complex BCC phase with 29 atoms per unit cell, the use of a 
BCC band structure is justified by the fact that the dilute Cr alloys retain the BCC crystal 
structure of pure Cr. Secondly, simple BCC Mn is of interest in its own right since it has 
been predicted to be ferromagnetic [8]. 

The first, and most time consuming, part of the problem is the calculation of the y- 
matrix defined in (4). It has a form very similar to the RPA susceptibility and the method 
employed to compute it is virtually the same as that discussed in detail in 161. Only the 
irreducible wedge of the Brillouir, zone must be considered since the transformation 
properties of the band energies and eigenvectors can be used to accomplish the full zone 
summation. The sum over the irreducible wedge is carried out using the analytical 
tetrahedron method [21] in which the wedge volume is decomposed into an integral set 
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of non-overlapping tetrahedra. Since the calculation is done at zero temperature, the 
regions of occupied and unoccupied states can be determined by the intersection of the 
Fermi surface and a given tetrahedron; in the limit of a sufficiently large number of 
tetrahedra the intersecting surface may be accurately approximated by a plane. In this 
limit, it is also reasonable to assume that the matrix elements vary slowly enough over 
a tetrahedron that is only necessary to use their averaged value. Calculations of the 
susceptibility in which matrix element variation is included in an extension of the 
analytical tetrahedron method [22] result in corrections of less than a few per cent in all 
symmetry directions both in the vicinity of a singularity and not. Consequently, advan- 
tage can be taken of the considerable savings in computing time obtained by neglecting 
explicit matrix element variation in a given tetrahedron. The results reported here 
have been calculated using 506 k points, which correspond to 2000 tetrahedra, in the 
irreducible wedge of the zone. Comparison of the results for selected wave vectors using 
finer meshes of k points (up to 1496 k points and 6750 tetrahedra) differ by less than 1 % 
along any of the BCC symmetry directions, including the neighbourhoods of singularities. 
The remainder of the calculation involves a relatively modest number of matrix manipu- 
lations and is straightforward. The entire calculation takes approximately three minutes 
on a Cray YMP for a wave vector in the [loo] direction. 

3. Results and discussion 

The RPA scalar susceptibility has been studied in some detail in [6] and is important for 
comparison with the susceptibility enhanced with electronic exchange and correlation 
effects as discussed above. In terms of the matrix forms given in (4) and (3, the RPA 
susceptibility may be written 

that is 

where the matrix elements are defined by 

A plot of xo and the many-body enhanced susceptibility along the [loo] direction for 
Cro,99Vo.ol is shown in figure 2. xo(q) exhibits a well-defined peak at about 0.956(2n/a) 
which is consistent with the decrease of the nesting wave vector of the electron jack 
and hole octahedron Fermi surface sheets expected for vanadium alloys. The peak is 
suggestive of an antiferromagnetic ground state with qsDw = 0.956(2n/a) [loo]; 
although this is larger than the observed SDW wave vector of 0.95(2n/a), it is 
appropriately smaller than the RPA prediction of 0.9635(2n/a) for pure Cr (see the dis- 
cussion in [6] that pertains to this matter). There is also a broad peak centered about 
0.65(2n/a) (not shown) which actually has a larger amplitude than the one at 
0.956(2n/a) and, by the argument in the introduction, should be located at the SDW 
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Figure 2. RPA (right-hand scale) and many-body enhanced (left-hand scale) susceptibilities 
for Cr,,,V, as a function of wave vector in the (1001 direction. The region of the q axis is 
chosen to accentuate the important features of these curves; there is also a broad peak in xn 
centred about 0.65 as discussed in the text. x" in the limit q = 0 correctly recovers the 
electronic density of states at the Fermi surface as found in a separate calculation. 

position. However, the magnitude of the broad peak, which arises from the competition 
between intra- and inter-band scattering, is exaggerated due to the simple plane wave 
treatment of the s- and p-state contributions to the matrix elements. This, together with 
the nesting feature, and the fact that a logarithmic singularity may be easily masked 
numerically, strengthens the prediction of 0.956(2n/a) as the SDW wave vector. Treating 
the problem in this manner has a substantial predictive value and has been effectively 
used in earlier work [ 5 , 6 ] ,  but the absence of a singularity in the susceptibility weakens 
the prediction. Secondly, the nesting of Fermi surface sheets is not a necessary condition 
for the appearance of a singularity in the enhanced susceptibility, and a singularity may 
occur without a corresponding peak in the RPA susceptibility. 

The enhanced susceptibility is singular at 0.9448(2n/a) [loo], and exhibits a second 
pole at 0.99(2n/a) [loo]. Since the susceptibility is negative in the region between the 
two poles, it could be concluded that the system is unstable against the formation of an 
SDW ground state for any wave vector in this region. However, the first singularity occurs 
in the immediate vicinity of the RPA peak, and it may be reasonably deduced that qsDw 
is the wave vector of that singularity (given the obvious importance of nesting in the 
antiferromagnetism of Cr and its alloys). This point will be discussed in more detail 
below. 

Similar behaviour is seen in the susceptibilities of other Cr,-,V, alloys with the 
predicted SDW wave vector decreasing linearly with increasing x as plotted in figure 3. 
The wave vector of the second singularity, however, does not follow an easily discernible 
trend and varies between 0.95(2n/a) and the zone boundary for the range of x shown in 
figure 3. In addition, its position is also highly sensitive to the exchange and correlation 
integral used in the calculation. Changes of a few per cent in A can cause the two 
singularities to nearly merge, or push the second one beyond the zone boundary. Despite 
these variations, the position of the first singularity changes by considerably less than 
1%, justifying its choice as the SDW wave vector. 
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Figure 3. Concentration dependence of 9sDw (in the [loo] direction). The results of the 
present calculation (with A obtained from (14)) are plotted as solid curves, and the neutron 
data of [ l]  by open (for V impurities) and closed (for Mn impurities) squares. The 9 axis 
origin has been chosen to exaggerate the differences between theory and experiment. 

For Cr, -,Mnx alloys, a double pole structure does not emerge for anyx or change in 
A .  One singularity appears, with a wave vector which increases linearly withx (see figure 
3), and the susceptibility is negatively between it and the zone boundary. The position 
of the singularity is also relatively insensitive to small changes in A ,  moving by much less 
than 1%. In the same spirit as the earlier discussion for V impurities, the SDW wave 
vector is determined from the location of the singularity. 

In the plots of qsDw as a function of concentration shown in figure 3, the solid lines 
are the result of the present calculation and the open and closed squares are the low 
temperature neutron scattering SDW wave vectors reported in [ l ]  for Cr,-,V, and 
Cr, -xMnx, respectively. The agreement between the computed and measured wave 
vectors is very good overall, with exact agreement for pure Cr. However, while the 
computed slopes of the (approximately) linear dependences on concentration agree 
closely with the RPA slopes found in [6], there are differences with the observed results. 
These differences cannot be accounted for, as suggested above, through variation of the 
exchange and correlation integral, even to the extent of using the pure Cr value of A. It 
is therefore likely that the lack of an appropriately computed many-body A is not the 
cause of the discrepancies. Similarly, local-field corrections, arising from the rapid 
spatial oscillation of the spin-density wave, are probably small, particularly in light of 
the excellent agreement between theory and experiment for pure Cr. This opens the 
question of the dataitself. There is scatter in thespin-density-wave wavevectorsobtained 
in [ 11 as function of concentration, especially for Mn impurities, and uncertainties in the 
measured results are not quoted. Together with the vintage of these measurements and 
the lack of more recent results, a new set of experiments would be beneficial for 
better understanding these systems and in resolving what may, in fact, be apparent 
discrepancies. It can be concluded that the antiferromagnetism of Cr alloys can be 
understood in terms of the tight-binding formulation of the paramagnetic susceptibility 



9094 K Schwartzman and J L Fry 

presented here, with exchange and correlation enhancements included by means of the 
local-density approximation. 

As an additional point, the results of the present study are computed at zero tem- 
perature, but the richness in the temperature dependence of the data presented in [ l ]  
has bearing on the present discussion. The observed spin-density wave in pure Cr is 
transverse between the NCel temperature of 312 K and a ‘spin-flip’ temperature, Tsf, of 
120 K. However, below T,, the SDW is observed to be longitudinal. In alloys of Cr, T,, is 
strongly depressed for increasing impurity concentration, andgenerally falls below 4.2 K 
at several atomic per cent concentration. The NCel temperature also decreases rapidly 
for increasing concentrations of impurity species to the left of Cr (for example, V) in the 
periodic table, but it increases rapidly for species to its right (for example, Mn). By 
about a 1% concentrationof the latter impurities, an abrupt transition to a commensurate 
SDW is observed for all temperatures above 4.2K. It is clear from figure 3 that the 
computed results would only predict a commensurate spin-density oscillation for con- 
siderably larger impurity concentrations (even if ?, is allowed to vary as mentioned 
above). This is not necessarily a failure of the formulation used here, since it is likely 
that such an abrupt change can only occur if there is an associated structural change in 
the system. 

As might be expected to follow from the discussion in the previous paragraph, the 
location in the zone of the SDW wave vector also depends on the temperature. The data 
for qsDw obtained in [ l ]  were generally taken for two sets of temperatures: those close 
to the NCel temperature and those well below it. In all cases, the wave vectors of the 
SDW (for incommensurate structures) measured near the Nee1 temperature were about 
1% greater than the corresponding low temperature data, with a smooth variation in 
between [23]. The temperature dependence of (ISDW, and the calculation of magnetic 
transition temperatures, will be treated in a separate publication. 

In the present study, the zero-temperature paramagnetic susceptibility is computed 
and implicitly considers only transverse SDW configurations. However, as noted above, 
the transverse configuration may not be energetically favourable at T = 0 K for any of 
the alloy compositions under consideration. This distinction could also contribute to the 
disagreement between the computed and observed wave vectors discussed above; the 
free energy difference between the transverse and longitudinal SDW configurations can 
be expected to increase with increasing impurity concentrations (despite the precipitous 
decrease in T,, which accompanies increasing x ) .  

The susceptibility at the zone centre yields the electronic density of states at the 
Fermi surface (and comparison with the RPA susceptibility furnishes a computed measure 
of many-body effects on the density of states or, equivalently, the specific heat). A plot 
of ~ ( 0 )  as a function of concentration of Mn impurities in Cr is shown in figure 4. The 
rapid increase and subsequent singularity at above equi-atomic concentrations indicates 
an instability of either the paramagnetic or antiferromagnetic phase (depending on 
whether there is a pole in the susceptibility at a non-zero wave vector). Since ~ ( 0 )  is 
negative beyond approximately x = 0.5, the system is unstable toward formation of a 
ferromagnetic ground state (which can be thought of a spin-density oscillation with 
infinite wavelength). This is consistent with an earlier prediction [8] of ferromagnetism 
in pure 6-Mn and might provide an experimental approach to test that prediction which 
is simpler than the difficult problem of epitaxial growth of simple BCC Mn [24]. In 
addition, the susceptibility was also studied for an antiferromagnetic instability for 
x < 0.5: with the alloy A given by (14) antiferromagnetism was found for x < 0.27 
which persisted to x = 0.45 by allowing variations of several per cent from (14). This 
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Figure 4. The many-body enhanced susceptibility at the zone centre as a function of x for 
Cr, -xMn,. The calculation was actually done for q = 0.0000.5,0,0)(2n/a) to avoid numerical 
problems, and (14) was used to determine A. The singularity at x = 0.5 indicates a ferro- 
magnetic instability. 

is reasonably consistent with the data of [l] which indicates a non-vanishing NCel 
temperature to x = 0.5, although the crystal structure at these concentrations is not 
specified. 

4. Conclusions 

The antiferromagnetism of dilute Cr alloys with V and Mn impurities may be treated 
accurately by means of a tight-binding formulation of the paramagnetic susceptibility 
with electronic exchange and correlation included self-consistently within the local- 
density approximation. Agreement between computed and measured results for the 
SDW wave vector as a function of impurity concentration is very good. The relatively 
minor discrepancies that occur in the slopes of the (approximate) linear dependences 
can possibly be attributed to the distinction between the transverse and longitudinal 
susceptibilities as a function of temperature. However, it can also be argued that a new 
set of more accurate low temperature measurements of the concentration dependence 
of qsDw is called for. The success of the approach studied here is consistent with the 
conventional understanding of the importance of Fermi surface nesting in Cr alloy 
system, as well as the results of a previous RPA formulation of the problem. 

The possibility of alloy stabilization of Cr, -xMnx in the simple Bcc phase, for approxi- 
mately equi-atomic concentrations of Cr and Mn, is suggested as a method for experi- 
mentally determining whether 6-Mn is ferromagnetic. The present study predicts 
ferromagnetism in simple BCC Crl -xMnx for 0.5 S x S 1. 
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